\(\int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx\) [851]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 133 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx=-\frac {39 a \log (1-\sin (c+d x))}{16 d}-\frac {9 a \log (1+\sin (c+d x))}{16 d}-\frac {a \sin (c+d x)}{d}-\frac {a \sin ^2(c+d x)}{2 d}+\frac {a^3}{8 d (a-a \sin (c+d x))^2}-\frac {5 a^2}{4 d (a-a \sin (c+d x))}-\frac {a^2}{8 d (a+a \sin (c+d x))} \]

[Out]

-39/16*a*ln(1-sin(d*x+c))/d-9/16*a*ln(1+sin(d*x+c))/d-a*sin(d*x+c)/d-1/2*a*sin(d*x+c)^2/d+1/8*a^3/d/(a-a*sin(d
*x+c))^2-5/4*a^2/d/(a-a*sin(d*x+c))-1/8*a^2/d/(a+a*sin(d*x+c))

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2915, 12, 90} \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {a^3}{8 d (a-a \sin (c+d x))^2}-\frac {5 a^2}{4 d (a-a \sin (c+d x))}-\frac {a^2}{8 d (a \sin (c+d x)+a)}-\frac {a \sin ^2(c+d x)}{2 d}-\frac {a \sin (c+d x)}{d}-\frac {39 a \log (1-\sin (c+d x))}{16 d}-\frac {9 a \log (\sin (c+d x)+1)}{16 d} \]

[In]

Int[Sin[c + d*x]*(a + a*Sin[c + d*x])*Tan[c + d*x]^5,x]

[Out]

(-39*a*Log[1 - Sin[c + d*x]])/(16*d) - (9*a*Log[1 + Sin[c + d*x]])/(16*d) - (a*Sin[c + d*x])/d - (a*Sin[c + d*
x]^2)/(2*d) + a^3/(8*d*(a - a*Sin[c + d*x])^2) - (5*a^2)/(4*d*(a - a*Sin[c + d*x])) - a^2/(8*d*(a + a*Sin[c +
d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^5 \text {Subst}\left (\int \frac {x^6}{a^6 (a-x)^3 (a+x)^2} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {\text {Subst}\left (\int \frac {x^6}{(a-x)^3 (a+x)^2} \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {\text {Subst}\left (\int \left (-a+\frac {a^4}{4 (a-x)^3}-\frac {5 a^3}{4 (a-x)^2}+\frac {39 a^2}{16 (a-x)}-x+\frac {a^3}{8 (a+x)^2}-\frac {9 a^2}{16 (a+x)}\right ) \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = -\frac {39 a \log (1-\sin (c+d x))}{16 d}-\frac {9 a \log (1+\sin (c+d x))}{16 d}-\frac {a \sin (c+d x)}{d}-\frac {a \sin ^2(c+d x)}{2 d}+\frac {a^3}{8 d (a-a \sin (c+d x))^2}-\frac {5 a^2}{4 d (a-a \sin (c+d x))}-\frac {a^2}{8 d (a+a \sin (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.10 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {15 a \text {arctanh}(\sin (c+d x))}{8 d}-\frac {a \left (12 \log (\cos (c+d x))+6 \sec ^2(c+d x)-\sec ^4(c+d x)+2 \sin ^2(c+d x)\right )}{4 d}+\frac {15 a \sec (c+d x) \tan (c+d x)}{8 d}-\frac {15 a \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {5 a \sec (c+d x) \tan ^3(c+d x)}{d}-\frac {a \sin (c+d x) \tan ^4(c+d x)}{d} \]

[In]

Integrate[Sin[c + d*x]*(a + a*Sin[c + d*x])*Tan[c + d*x]^5,x]

[Out]

(15*a*ArcTanh[Sin[c + d*x]])/(8*d) - (a*(12*Log[Cos[c + d*x]] + 6*Sec[c + d*x]^2 - Sec[c + d*x]^4 + 2*Sin[c +
d*x]^2))/(4*d) + (15*a*Sec[c + d*x]*Tan[c + d*x])/(8*d) - (15*a*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (5*a*Sec[
c + d*x]*Tan[c + d*x]^3)/d - (a*Sin[c + d*x]*Tan[c + d*x]^4)/d

Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.26

method result size
derivativedivides \(\frac {a \left (\frac {\sin ^{8}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{8}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{6}\left (d x +c \right )\right )}{2}-\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{4}-\frac {3 \left (\sin ^{2}\left (d x +c \right )\right )}{2}-3 \ln \left (\cos \left (d x +c \right )\right )\right )+a \left (\frac {\sin ^{7}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {3 \left (\sin ^{7}\left (d x +c \right )\right )}{8 \cos \left (d x +c \right )^{2}}-\frac {3 \left (\sin ^{5}\left (d x +c \right )\right )}{8}-\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {15 \sin \left (d x +c \right )}{8}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(167\)
default \(\frac {a \left (\frac {\sin ^{8}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{8}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{6}\left (d x +c \right )\right )}{2}-\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{4}-\frac {3 \left (\sin ^{2}\left (d x +c \right )\right )}{2}-3 \ln \left (\cos \left (d x +c \right )\right )\right )+a \left (\frac {\sin ^{7}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {3 \left (\sin ^{7}\left (d x +c \right )\right )}{8 \cos \left (d x +c \right )^{2}}-\frac {3 \left (\sin ^{5}\left (d x +c \right )\right )}{8}-\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {15 \sin \left (d x +c \right )}{8}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(167\)
risch \(3 i a x +\frac {a \,{\mathrm e}^{2 i \left (d x +c \right )}}{8 d}+\frac {i a \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {i a \,{\mathrm e}^{-i \left (d x +c \right )}}{2 d}+\frac {a \,{\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}+\frac {6 i a c}{d}+\frac {i a \left (6 i {\mathrm e}^{4 i \left (d x +c \right )}+9 \,{\mathrm e}^{5 i \left (d x +c \right )}-6 i {\mathrm e}^{2 i \left (d x +c \right )}+22 \,{\mathrm e}^{3 i \left (d x +c \right )}+9 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{4 \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{2} d}-\frac {39 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {9 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}\) \(208\)
parallelrisch \(\frac {6 \left (\left (-\frac {\sin \left (3 d x +3 c \right )}{2}-\frac {\sin \left (d x +c \right )}{2}+\cos \left (2 d x +2 c \right )+1\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {13 \left (-1-\cos \left (2 d x +2 c \right )+\frac {\sin \left (d x +c \right )}{2}+\frac {\sin \left (3 d x +3 c \right )}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8}+\frac {3 \left (-1-\cos \left (2 d x +2 c \right )+\frac {\sin \left (d x +c \right )}{2}+\frac {\sin \left (3 d x +3 c \right )}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8}+\frac {\cos \left (2 d x +2 c \right )}{24}-\frac {\cos \left (4 d x +4 c \right )}{24}-\frac {\sin \left (d x +c \right )}{12}-\frac {17 \sin \left (3 d x +3 c \right )}{48}-\frac {\sin \left (5 d x +5 c \right )}{48}\right ) a}{d \left (2-\sin \left (3 d x +3 c \right )-\sin \left (d x +c \right )+2 \cos \left (2 d x +2 c \right )\right )}\) \(229\)
norman \(\frac {\frac {12 a}{d}+\frac {12 a \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {15 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {25 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {11 a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {11 a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {25 a \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}-\frac {15 a \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {52 a \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {30 a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {30 a \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}-\frac {39 a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}-\frac {9 a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}+\frac {3 a \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(264\)

[In]

int(sec(d*x+c)^5*sin(d*x+c)^6*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(1/4*sin(d*x+c)^8/cos(d*x+c)^4-1/2*sin(d*x+c)^8/cos(d*x+c)^2-1/2*sin(d*x+c)^6-3/4*sin(d*x+c)^4-3/2*sin(
d*x+c)^2-3*ln(cos(d*x+c)))+a*(1/4*sin(d*x+c)^7/cos(d*x+c)^4-3/8*sin(d*x+c)^7/cos(d*x+c)^2-3/8*sin(d*x+c)^5-5/8
*sin(d*x+c)^3-15/8*sin(d*x+c)+15/8*ln(sec(d*x+c)+tan(d*x+c))))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.29 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {8 \, a \cos \left (d x + c\right )^{4} + 6 \, a \cos \left (d x + c\right )^{2} - 9 \, {\left (a \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - a \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 39 \, {\left (a \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - a \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (4 \, a \cos \left (d x + c\right )^{4} + 6 \, a \cos \left (d x + c\right )^{2} - 3 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{16 \, {\left (d \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^6*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/16*(8*a*cos(d*x + c)^4 + 6*a*cos(d*x + c)^2 - 9*(a*cos(d*x + c)^2*sin(d*x + c) - a*cos(d*x + c)^2)*log(sin(d
*x + c) + 1) - 39*(a*cos(d*x + c)^2*sin(d*x + c) - a*cos(d*x + c)^2)*log(-sin(d*x + c) + 1) + 2*(4*a*cos(d*x +
 c)^4 + 6*a*cos(d*x + c)^2 - 3*a)*sin(d*x + c) + 2*a)/(d*cos(d*x + c)^2*sin(d*x + c) - d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**5*sin(d*x+c)**6*(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.80 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx=-\frac {8 \, a \sin \left (d x + c\right )^{2} + 9 \, a \log \left (\sin \left (d x + c\right ) + 1\right ) + 39 \, a \log \left (\sin \left (d x + c\right ) - 1\right ) + 16 \, a \sin \left (d x + c\right ) - \frac {2 \, {\left (9 \, a \sin \left (d x + c\right )^{2} + 3 \, a \sin \left (d x + c\right ) - 10 \, a\right )}}{\sin \left (d x + c\right )^{3} - \sin \left (d x + c\right )^{2} - \sin \left (d x + c\right ) + 1}}{16 \, d} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^6*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/16*(8*a*sin(d*x + c)^2 + 9*a*log(sin(d*x + c) + 1) + 39*a*log(sin(d*x + c) - 1) + 16*a*sin(d*x + c) - 2*(9*
a*sin(d*x + c)^2 + 3*a*sin(d*x + c) - 10*a)/(sin(d*x + c)^3 - sin(d*x + c)^2 - sin(d*x + c) + 1))/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.85 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx=-\frac {16 \, a \sin \left (d x + c\right )^{2} + 18 \, a \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) + 78 \, a \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) + 32 \, a \sin \left (d x + c\right ) - \frac {2 \, {\left (9 \, a \sin \left (d x + c\right ) + 7 \, a\right )}}{\sin \left (d x + c\right ) + 1} - \frac {117 \, a \sin \left (d x + c\right )^{2} - 194 \, a \sin \left (d x + c\right ) + 81 \, a}{{\left (\sin \left (d x + c\right ) - 1\right )}^{2}}}{32 \, d} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^6*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/32*(16*a*sin(d*x + c)^2 + 18*a*log(abs(sin(d*x + c) + 1)) + 78*a*log(abs(sin(d*x + c) - 1)) + 32*a*sin(d*x
+ c) - 2*(9*a*sin(d*x + c) + 7*a)/(sin(d*x + c) + 1) - (117*a*sin(d*x + c)^2 - 194*a*sin(d*x + c) + 81*a)/(sin
(d*x + c) - 1)^2)/d

Mupad [B] (verification not implemented)

Time = 9.95 (sec) , antiderivative size = 286, normalized size of antiderivative = 2.15 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {-\frac {15\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{4}+\frac {3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{2}+7\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7-\frac {7\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{2}+\frac {11\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{2}-\frac {7\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{2}+7\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\frac {3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{2}-\frac {15\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}-\frac {9\,a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{8\,d}-\frac {39\,a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}{8\,d}+\frac {3\,a\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d} \]

[In]

int((sin(c + d*x)^6*(a + a*sin(c + d*x)))/cos(c + d*x)^5,x)

[Out]

((3*a*tan(c/2 + (d*x)/2)^2)/2 - (15*a*tan(c/2 + (d*x)/2))/4 + 7*a*tan(c/2 + (d*x)/2)^3 - (7*a*tan(c/2 + (d*x)/
2)^4)/2 + (11*a*tan(c/2 + (d*x)/2)^5)/2 - (7*a*tan(c/2 + (d*x)/2)^6)/2 + 7*a*tan(c/2 + (d*x)/2)^7 + (3*a*tan(c
/2 + (d*x)/2)^8)/2 - (15*a*tan(c/2 + (d*x)/2)^9)/4)/(d*(tan(c/2 + (d*x)/2)^2 - 2*tan(c/2 + (d*x)/2) - 2*tan(c/
2 + (d*x)/2)^4 + 4*tan(c/2 + (d*x)/2)^5 - 2*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 - 2*tan(c/2 + (d*x)/2)
^9 + tan(c/2 + (d*x)/2)^10 + 1)) - (9*a*log(tan(c/2 + (d*x)/2) + 1))/(8*d) - (39*a*log(tan(c/2 + (d*x)/2) - 1)
)/(8*d) + (3*a*log(tan(c/2 + (d*x)/2)^2 + 1))/d